

보도시점

보건복지부

2025. 5. 9.(금) 공고(10:00) 이후

배포 2025. 5. 8.(목)

한국형 ARPA-H 2025년도 신규 프로젝트 공고

- 보건안보, 미정복질환, 필수의료 난제 해결 위한 과제 공고(5.9~6.9) -

보건복지부(장관 조규홍)와 한국보건산업진흥원(원장 차순도)의 K-헬스미래추진단(추진단장 선경)은 5월 9일(금) '한국형 ARPA-H* 프로젝트'의 2025년 1차 신규 프로젝트 3개를 발표하고, 이를 추진하기 위한 연구개발과제를 공고하였다.

* ARPA-H(Advanced Research Projects Agency for Health, 의료고등연구계획국)

'한국형 ARPA-H 프로젝트'는 담대한 도전을 통해 국가 난제를 해결하고 의료·건강 서비스의 혁신적 변화를 가져오는 국민 체감형 연구개발 사업이다. 정부는 시급히 해결이 필요한 5대 임무*를 설정하고 이를 해결하기위한 혁신·도전적 연구개발(R&D)에 2024년부터 2032년까지 9년간 1조1,628억 원의 총사업비를 지원할 계획이다.

* ①보건안보 확립, ②미정복질환 극복, ③바이오헬스 초격차 기술 확보, ④복지·돌봄 개선, ⑤필수의료 혁신

정부는 2024년에 5대 임무별 프로젝트 관리자(PM, Project Manager)를 채용하여, 총 10개의 연구 프로젝트를 기획하고 25개의 연구개발과제를 선정하여 사업을 추진하고 있다. 2024년에는 ▲백신 초장기 비축기술개발, ▲우주의학 혁신기술개발, ▲멀티모달 근감소증 치료기술개발 등 도전적인 프로젝트들을 발표하였다. 임무별 연구 프로젝트의 상세한 내용은 K-헬스미래추진단 누리집(khidi.or.kr/khmi)에서 확인할 수 있다.

이번 2025년 신규 프로젝트는 전문가 자문단 논의, 대국민 수요조사 및 빅데이터 분석을 거쳐 도전적 문제를 선정하였으며, '제안자의 날'을 개최하여 현장 연구자들의 생생한 의견을 직접 청취하며 구체화하였다. 이번 프로젝트에는 ▲감염병 대유행 대응을 위한 중증화 억제 치료제 개발, ▲환자 맞춤형 항암백신 개발 최적화 플랫폼 구축, ▲휴머노이드형 수술보조 의료로봇 개발이 포함된다.

【신규 과제 주요 내용】

먼저, 보건안보 확립 임무는 수년 단위로 반복되는 감염병 팬데믹에 대응하여 고위험군의 사망률을 감소시키기 위한 치료제 개발 필요성을 바탕으로, ▲감염병 대유행 대응을 위한 중증화 억제 치료제 개발 프로젝트를 추진한다. 기저질환 보유자 등 고위험 감염 환자의 중증화 억제 및 초기 치료에 광범위하게 사용할 수 있는 치료제·치료전략 개발을 목표로 한다.

미정복 질환 극복 임무에서는 ▲환자 맞춤형 항암백신 개발 최적화 플랫폼 구축 프로젝트를 추진한다. 암 환자의 다양한 변이에 대응하여 치료 및 재발 방지를 위하여 신항원 분석·발굴, 면역원성 검사, 개인맞춤형 mRNA 백신 제조 등 세부 기술을 통합한다. 암 환자 검체 채취 후 단기간 이내 신항원을 발굴하고 제조 및 투여가 가능한 mRNA 기반 백신 신속개발 플랫폼 구축을 목표로 한다.

마지막으로, **필수의료 혁신 임무**는 의료인력 부족 등 필수의료 문제를 해결하기 위해 ▲휴머노이드형 수술보조 의료로봇 개발을 추진한다. 반복적 수술 보조작업을 수행하는 AI 알고리즘과 하드웨어를 결합시킨 Physical AI 기반 수술 보조로봇을 개발하여 수술 과정에서 의사를 보조하도록 하여 효율적 수술환경을 조성하는 것이 목표다.

【과제 공고 내용】

연구개발과제 공고는 5월 9일(금)부터 6월 9일(월)까지 31일간 진행되며, 6월 중 연구개발기관을 선정하고 7월에 연구를 개시할 계획이다. 정부는 이번에 추진하는 프로젝트별로 5년간 175억 원을 지원할 예정이며, 2차신규 프로젝트 7개 또한 6월 내 공고를 통해 사업을 추진할 예정이다.

이번 공고에 관한 자세한 내용과 제출 양식은 보건복지부 누리집 (www.mohw.go.kr), K-헬스미래추진단 누리집(khidi.or.kr/khmi), 범부처통합연 구지원시스템(www.iris.go.kr)과 한국보건산업진흥원 보건의료기술종합정보 시스템(www.htdream.kr)에서 확인할 수 있다.

보건복지부 정은영 보건산업정책국장은 "이번 2025년 신규 프로젝트는 성공 시 감염병 치료제 확보, 암 극복, 필수의료 인력 부족 개선 등 국민 건강을 혁신적으로 개선하는 도전적인 프로젝트"라며, "이번 프로젝트에 우리나라의 보건의료 연구 역량을 한데 모아 국민 건강과 의료 혁신에 실질적인 돌파구를 마련할 수 있기를 기대한다."라고 밝혔다.

K-헬스미래추진단 선경 추진단장은 "이번 2025년 신규 프로젝트는 작년에 이어 두 번째로 진행한 기획인 만큼, 전문가 논의뿐 아니라 대국민 수요 조사, 현장 연구자 의견 수렴 등 다각적 접근을 통해 기획하였다."라며, "프로젝트가 성공적으로 진행되어 국민이 체감할 수 있는 결과물을 만들어낼 수 있도록 창의적이고 역량 있는 연구자분들의 많은 참여를 바란다"라고 밝혔다.

<붙임> 1. 한국형 ARPA-H 프로젝트 개요

- 2. 한국형 ARPA-H 2025년 1차 추진 프로젝트
- 3. 한국형 ARPA-H 2024년 추진 프로젝트
- 4. 한국형 ARPA-H 2024년 연구개발과제 목록

담당 부서	보건산업정책국	책임자	과 장	홍승령 (044-202-2870)
	보건의료기술개발과	701	팀 장	박성민 (044-202-2875)
	바이오헬스R&D혁신TF	담당자	사무관	김영은 (044-202-2876)
담당 부서	한국보건산업진흥원	책임자	팀 장	전은숙 (02-2288-6121)
	K-헬스미래추진단	식 급사	팀 장	이현정 (02-2288-6181)

붙임1

한국형 ARPA-H 프로젝트 개요

□ 사업 개요

- (목적) 고비용·고난도이나 파급효과가 큰 임무 중심형 R&D를 지원하여 넥스트 팬데믹, 필수의료 위기 등 국가 보건 난제 해결
- (규모) '24년~'32년(9년) / 1조 1,628억원
- (특징) 迅速절차·失敗용인·多분야 연계한 대규모·도전적 R&D 추진,
 임무 달성을 위해 PM(Project Manager) 중심 신속 결정

□ 사업 주요내용

○ 국가 차원의 시급한 **5대 임무 도출** → 임무 달성을 위한 **도전적** 목표를 설정하고 고난도이나 파급효과 큰 혁신적 연구지원

분야	임무 영역	목표 (예시)			
포막	et 84	5년 이내	10년 이내		
핵심 과제	● 보건안보 확립	100일내 백신 개발·생산	원인불명 감염병 5분내 신속 차단		
	② 미정복질환 극복	10대 암 정확도 90% 조기 검진	암 발생률 50% 감소		
	❸ 바이오헬스 혁신	거대 AI 활용 맞춤 의료	고가 의약품 가격 1/100		
	④ 복지·돌봄 개선	Aging in Place 실현	건강수명 73세 → 75세		
	⑤ 필수의료 혁신	디지털 기반 필수의료 고도화	지역 의료이용 95% 이상		

붙임2 한국형 ARPA-H 2025년 1차 프로젝트

임무	내용
보건 안보	① 감염병 대유행(팬데막) 대응을 위한 중증화 억제 치료제 개발(PROCUREX) * PROCUREX; Pandemic Readiness for Outbreak Control and Urgent REscue with TX ■ (필요성) 반복되는 감염병 팬데믹에도 불구하고 적절 효능의 치료제 확보 대책 등 부족, 고위험군의 중증화시망률 감소를 위한 치료제 개발 필요 ■ (목표) 바이러스 감염병 대유행 시 치사율의 가장 중요요인인 감염환자의 중증화 억제 및 초기치료에 광범위하게 사용가능한 치료제·치료전략 개발 (항바이러스제, 면역조절제) ■ (프로젝트 규모) '25~'29, 175억원('25년 15억원)
미정복 질환	 ② 환자 맞춤형 항암백신 개발 최적화 플랫폼 구축(PAVE) * PAVE : Platform for Personalized neo-Antigen Vaccine Excellence ■ (필요성) 암환자의 다양한 변이에 대응하여 치료·재발 방지를 위한 환자맞춤형 항암백신 필요 및 세부 기술별 통합을 위한 플랫폼 구축 필요 ■ (목표) 암 환자 검체 채취 후 6~8주 이내 신항원 발굴, 제조, 투여가 가능한 mRNA 기반 항암백신 신속개발 플랫폼 구축 ■ (프로젝트 규모) '25~'29, 175억원('25년 15억원)
필수의료	③ 휴머노이드형 수술보조 의료로봇(Physical AI) 개발(PAIR-S) * PAIR-S: Physical AI Interactive Robot-Surgery ■ (필요성) 수술실 내 의료인력 부족 및 지역별 수술 자원 불균형으로 인한 문제 해결을 위하여 휴머노이드형 수술보조 로봇을통해 수술과정에서 의사 보조 및 효율적 수술환경 조성 필요 ■ (목표) 반복적 수술 보조작업을 수행하는 AI 기반 수술보조로봇(AI 알고리즘, 하드웨어 메커니즘) 개발 * 일반외과, 흉부외과, 이비인후과, 산부인과 등 중규모 진료과 실증연구 포함 ■ (프로젝트 규모) '25~'29, 175억원('25년 15억원)

한국형 ARPA-H 2024년 프로젝트

임무	내용
보건 안보	① 백신 초장기 비축기술(STOREx) * STOREx; Stockpile Technology to Omit Repeated Entity for Vx ■ (필요성) 백신은 보관기간이 제한적이고 사용 시기가 불확실하여 비축전략 수립이 어렵고 비효율 발생 ■ (목표) 최소 10년 이상 백신 초장기 비축 가능한 백신 저장기술 개발 ② 백신 탈집중화 생산시스템 구축 (DeCAFx) * DoCAFy: DoControlizing & Accelerating Encility for Vy
	 * DeCAFx; DeCentralizing & Accelerating Facility for Vx ■ (필요성) 팬데믹 상황에서 신속하게 백신을 개발하고 공급하려면 생산과정을 국가별로 현지화 필요 ■ (목표) 항원 디자인 → mRNA 항원 생산 → 항원 패키징까지 개발·생산 전체 공정을 수행하는 이동형·소규모 백신 생산모듈 개발
미정복 질환	③ 20-30대를 위한 10종 암 조기 스크리닝 기술개발(CANDI) * CANDI: CANcer Detection Innovations ■ (필요성) 암의 조기진단은 한국인 암 사망률을 최대 40%까지 감소시킬 수 있는 가장 효율적인 방법이며, 최근 급증하고 있는 2~30대 암 발생률에 대한 선제적 대응 필요 ■ (목표) 한국인 발생률 상위 10종 암에 대해 민감도 90% 이상(특이도 95% 이상)인 저비용 검사 제품개발 및 상용화
	④ 비면역성 고형암 신규 약물타겟 초고속 검증 및 신속개발(RACE) * RACE; Rapid Advancement in Cold tumor Elimination ■ (필요성) 면역항암제에 반응하지 않는 비면역성(Cold Tumor) 고형암(폐·간·대장암 등)에 유효하고 안전한 신규 항암제 개발 필요 ■ (목표) 비면역성 고형암을 공략하는 신규 약물 타겟 초고속 발굴·검증으로 신규물질 임상 도입까지 기간 30% 단축
바이오 헬스	 ⑤ 보건의료 난제극복을 위한 우주의학 혁신기술개발(I-BTS-UP) * I-BTS-UP, Innovative Biomedical Technology in Spac for Unsolved difficult medical Problems ■ (필요성) 우주 환경은 지상에서의 방법론적 한계를 극복하는 차세대 분야로 주목받고 있으나 국내는 발사체 기술개발 외 지원 부진 ■ (목표) 기존 의료기술로 풀지 못한 난제 중 우주환경 활용이 적합한 난제를 설정하고 해결방안을 제시 * ①생체신호 부적응, ②면역노화 가속, ③방사선 노출, ④혁신적 치료공정 개발

⑥ 환자 안전을 위한 개인별 면역기능 모사 기술개발(I-MPS-DS)

- * I-MPS-DS; Innovative advanced MicroPhysiological System based-biomedical device mimicking human immune functions for Drug Safety
- (필요성) **미세생리시스템^{*}은** 인간의 개별 장기를 모사하는 수준으로 고도화 중, 이를 활용하여 **신약 부작용을 평가하고 환자안전 증진 가능**
 - * 미세생리시스템(MPS): 인간의 장기·조직의 생리학적 기능을 모사하는 미세유체 시스템, 주로 인간의 세포나 조직을 기반으로 하여 개발됨
- (목표) 첨단 미세생리시스템 기반 환자 개인별 **면역기능 평가용** 체외진단 기기·기술 개발 및 의료기기 임상시험 완료

⑦ 근감소증 멀티모달(Multi-modal) 치료기술 (HAPPY)

- * HAPPY; Holistic Approach for Promoting Physical Youthfulness
- (필요성) 기존의 치료제 개발 방법이 근육량 증가에만 개선을 보였으며 질적(근력·근 기능) 향상은 실패
- (목표) 근육의 양적·질적 향상을 위해 신규 바이오마커, 치료제, 디지털 의료제품 등 **다양한 근감소증 치료 기술 개발**

복지·돌봄

⑧ 통합 디지털 돌봄 솔루션 개발(DIGNITY)

- * DIGNITY; DIGital care-oN for Improving and Transferring Youthful longevity
- (필요성) 첨단기술 융합을 통해 돌봄 수요자의 삶의 질 제고 및 돌봄 제공자의 업무부담 경감 가능
- (목표) 통합적 돌봄 솔루션 기술을 통해 현재 기준 대비 **돌봄인력** 업무 효율성 200% 이상* 달성, 돌봄기술 비용 절감으로 보급성 제고
 - * 노인 5명당 요양보호사 1명, 환자 50명당 간호사 1명이 관리 가능한 플랫폼 개발

⑨ AI기반 지역완결형 응급환자 분류·이송시스템 개발(MAISTER)

- * MAISTER; Multimodal AI based regional Smart Transfer ER system
- (필요성) 응급상황 시 환자 중증도를 파악하고 이송하는 과정에서 비효율이 발생해 적시·적절한 치료가 지연되는 사례 다수 발생
- (목표) 지역 의료자원, 환자 상태 등 **데이터를 기반으로 최적의** 이송병원을 결정하는 시스템 개발, 의료현장에 적용하여 개선도* 평가
 - * 환자 과밀화 방지 정도, 이송 소요시간 단축, 권역 외 이송 감소, 사용자 만족도 등

필수의료

⑩ AI기반 다기관 중환자 실시간 원격관리 플랫폼 개발(AICUPS)

- * AICUPS; AI based ICU monitoring Platform and transfer System
- (필요성) 전국 중환자들의 실시간 상황을 파악할 수 있는 AI 기반 플랫폼*을 개발하여, 최적의 중환자 관리시스템 구축 필요
 - * 다기관 중환자·자원 데이터 수집·분석, AI 예측모델, 원격모니터링 시스템 등
- (목표) **중환자 원격관리 기술 및 이송시스템을 개발**하고, 이를 의료현장에 적용하여 **개선도 평가 및 성능 검증 실시**

붙임4

2024년 연구개발과제 목록

임무	프로젝트	연번	과제명	주관연구 개발기관	
		1	상온 초장기 비축 mRNA 백신 소재 및 대량 생산 공정 기술 개발	포항공과대학교 산학협력단	
	초장기 비축이 가능한 백신기술 개발	2	식물 종자를 활용한 두창/엠폭스 백신 초장기 비축기술 개발	(주) 바이오앱	
4 2 1014	, (백신 초장기 비축기술 개발)	3	백신 안정성 극대화를 위한 고형제형 mRNA-LNP 백신 마이크로나들 및 장기 보관 기술 개발	쿼드 메디슨	
보건안보		4	초임계 CO2 건조 기술을 활용한 초장기 코로나 백신 저장 기술 개발	서울대학교 산학협력단	
	팬데믹 대응 백신 초신속생산이 가능한 모듈형 생산시스템	1	팬데믹 대응 mRNA 백신 모듈형 초신속생산 시스템 개발	씨드모젠	
	개발 (백신 탈집중화 생산시스템 개발)	2	백신 탈집중화 생산시스템 개발	국제백신연구소	
	20-30대를 위한 10종	1	혈액검사로 30개암을 스크리닝하는 메틸롬-유전체 통합 AI 분석기반 차세대 암 조기진단 기술개발과 상용화	주식회사 아이엠비디엑스	
	암 조기 스크리닝 기술 개발	2	혈소판 기반 초격차 암 조기 스크리닝 기술 개발 (11종암)	포어텔 마이헬스	
마정복 <u>으</u> 환 극복		3	인공지능 기반 고효율 단백체 분석기술을 활용한 다중 암 진단 바이오마커 개발	서울대학교 산학협력단	
	난제 극복 RACE : Cold Tumor에 대한	1	생성형 AI기반 초고속 약물 발굴 및 신속 검증을 통한 난치성 삼중음성유방암, 췌장암 대상 방사성리간드치료제 개발	서울대학교 병원	
	신규 약물 타겟 초고속 검증 및 신속 개발	2	공간전사체 기반 타겟 발굴과 in silico 및 오가노이드 활용 타겟 검증을 통한 난치성 고형암 MLT 신규 치료제 신속 개발	서울대학교 산학협력단	

# P[2헬스 산업	의료난제 극복 우주의학 혁신의료기술개발	1	우주환경을 활용한 유도만능줄기세포 유래 인공혈액 분화 및 제조 공정 혁신 기술 개발	가톨릭대학교 산학협력단
		2	체액 이동기반 중추신경계질환 혁신 진단 및 치료 기술 개발	한국과학기술원
		3	난치성 간 질환 극복을 위한 미세중력 DLP 바이오 3D 프린팅 기반 우주 의료 기술 개발	한림대학교 산학협력단
		4	우주 미세중력 기반의 단백질 결정화 : 신약개발의 혁신적 패러다임 구축	스페이스린텍
	첨단 미세생리시스템 기반 면역기능 모사 혁신 기술개발	1	면역치료제 안전성 평가를 위한 미세생리시스템 개발	서울대학교 산학협력단
		2	개인별 면역항암제의 독성 및 효능 평가를 위한 고속 대용량 인체 면역미세 생체시스템 개발	엠비디 주식회사
복지· 돌봄	(근육량·근력·근기능 복합적 향상을 위한) 멀티모달(Multi-Modal) 근감소증 치료기술 개발	1	사코피니아 바이오 마커 발굴 및 혁신적 멀티모달 치료 기술 개발	성균관대학교 산학협력단
		2	멀티모달 근감소증 치료 컨소시엄	광주과학기술원
	(노쇠 고령자의 기본생활 보장 및 돌봄 의료 품질 향상을 위한) 통합 디지털 돌봄(Care-On) 솔루션 개발	1	고령자의 연속적인 통합 돌봄을 위한 AI 로봇 기반 디지털 트윈 돌봄 플랫폼	한국과학기술원
		2	인간-기술-데이터 통합 기반 노쇠고령자 돌봄 솔루션: CARE-net (Compassionate Al-loT for Resilient Elder Care and network system)	분당서울대학교 병원
필수의료	멀티모달 AI기반 지역완결형 스마트 응급환자 분류·최적 이송 시스템개발	1	멀티모달 AI기반 지역완결형 스마트 응급환자 분류·최적 이송 시스템 개발	경북대학교병원
		2	AI 기반 응급의료서비스 권역 통합 시스템	전남대학교병원
	AI기반의 다기관 중환자 실시간 관리 플랫폼 및 이송 시스템 개발	1	3권역 이상 또는 전국 권역별 중환자실 빅데이터 분석/관리 시스템 구축을 위한 연구개발	분당서울대학교 병원
		2	대규모 언어모델과 임상 의사결정 지원 시스템을 활용한 중환자 발생 예측 및 안전한 이송 지원 플랫폼 개발 및 실증 연구	세종충남대학교 병원